Tensor product variational formulation applied to pentagonal lattice
نویسندگان
چکیده
منابع مشابه
Tensor Product Variational Formulation for Quantum Systems
We consider a variational problem for the two-dimensional (2D) Heisenberg and XY models, using a trial state which is constructed as a 2D product of local weights. Variational energy is calculated by use of the the corner transfer matrix renormalization group (CTMRG) method, and its upper bound is surveyed. The variational approach is a way of applying the density matrix renormalization group m...
متن کاملMatrix product variational formulation for lattice gauge theory
For hamiltonian lattice gauge theory, we introduce the matrix product anzats inspired from density matrix renormalization group. In this method, wavefunction of the target state is assumed to be a product of finite matrices. As a result, the energy becomes a simple function of the matrices, which can be evaluated using a computer. The minimum of the energy function corresponds to the vacuum sta...
متن کاملStable Optimization of Tensor Product Variational State
We consider a variational problem for three-dimensional (3D) classical lattice models. We construct the trial state as a two-dimensional product of local variational weights that contain auxiliary variables. We propose a stable numerical algorithm for the maximization of the variational partition function per layer. Numerical stability and efficiency of the new method is examined through its ap...
متن کاملStable Optimization of Tensor Product Variational Functions
We consider a variational problem for three-dimensional (3D) classical lattice models, where the trial state is given by a uniform 2D product of local factors. Maximization of the variational partition function draws a self-consistent equation for the local factor. We propose a stable algorithm to solve the equation numerically when the variational function contains many degrees of freedom. Num...
متن کاملBEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES
We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2015
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/48/43/435002